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Atmospheric Rivers (ARs)

Most AR studies to date have been regionally focused on
western N. America and western Europe.
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Origin of “Atmospheric Rivers”
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These extreme storms
A _ influence global water and
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shape Earth’s climate.
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AR Landfall Impacts

Account for ~40% of California’s annual water supply in a few storms
Account for most flooding events on U.S. West coast



Jet Propulsion Laboratory

) California Institute of Technology Regional Concerns VS GIObal ApproaCh

A -y

Manage California
Water Resources &
Flood Hazards

Management Aided by
Accurate Weather &
Climate Predictions

Modern Weather &
Climate Prediction is a
Global Consideration
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Outline

. Global AR Considerations
|. Detection
II. Characteristics
[ll. Impacts
V. Weather Predictions
V. Climate Projections
ll. Regional AR Interests
|. Experimental Subseasonal (i.e. week 3) Predictions
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* Look for contiguous areas
* Length > 2000 km
* Length/Width > 2

Gives Long, Narrow Extreme Moisture Transports i.e. Rivers
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Global AR Detection

AR detection applied to global
“reanalysis” datasets (e.g., ERA-I,
MERRA-2)

e ~30vyear records, with AR maps every 6
hours

- R s S o
o Sz, Ate-gu ootz N ) * Code and databases available.

 Developed for global studies — analysis,
modeling, prediction, etc.
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Guan and Waliser (2015)
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AR Frequency and IVT

AR Landfalls |.
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Guan and Waliser (2015)
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Climate Patterns and ARs

Climate patterns, such as PNA,
Pacific-North American (PNA) affect the frequency of ARs

AR Fregquency, NDJFM, WY1998-2011
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+PNA AR Freq. Anomalies

AO PNA AO & PNA
Diff. p=0.007 Diff. p=0.037 Diff. p=0.001

2010/2011 Winter in California
e Largest total seasonal snow in
previous 14 Years (~170% of normal)

* Largest # of AR days (twice normal)
e —PNA and —AO Conditions

Guan et al. 2013
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e El Nino Southern
La Nifa . .
anomaly Oscillation (ENSO)
; = ] Impacts AR Frequency
( - £l N-in:) AR Frequency Anomalies - ACI'OSS the Globe

Longer-lead predictions of ARs
may be enabled by these slowly
evolving “climate” patterns
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Guan and Waliser (2015)
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AR Extremes & Global Impacts

NCEP GFS IVT (ki aded), IVT Vector, and SLP (hPa; contours)
nitialized: 1200 UTC 01 _____Valid: 1200 UTC 01/08/2017

e A strong Atmospheric River (AR) made landfall
over the U.S. West Coast on 8-9 January 2017.

* A number of locations experienced over 12
inches of precipitation over 3 days, and were
exposed to extreme wind conditions.

* The extreme storm conditions resulted in the
demise of the “Tunnel Tree”, a giant sequoia in
Calaveras Big Trees State Park, California
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Pioneer Cabin Tree, also known as the “Tunnel Tree”, a giant sequoia in Calaveras Big Trees State Park, CA

Slide developed by D. Waliser (JPL), M. Dettinger (USGS) & M. Ralph (CW3E/UCSD)
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Wind & Precipitation

d
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Of 19 damaging wind storms with
insurance losses in SB US over Europe
from 1997-2013, 14 (filled) were
associated with ARs. Circle size indicates
size of S loss; squares are less than S1B.

Circle color (size) indicates the rank (speed) of 10 m wind
extremes that are connected to an AR considering all 6-
hourly ECWMF surface wind values from 1997-2014. Waliser & Guan (2017)
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Method of determining if a predicted atmospheric river (AR)
is a “hit” or a “miss” relative to an observed AR

Observed

) S How well do our global NWP
T L M models — ECMWEF in this case -
o predict AR occurrence & position?

observed AR
_/"r‘) D, >DT
/  a“miss”
Distance (D) between

predicted AR and —
observed AR

N~
Centroid* of predicted AR at
same time as the observed AR

*Centroid is the IVT-weighted center of the AR, based on Guan and Waliser (2015)

1996-2013 ECMWF NDJFM % ensemble AR hits
7-day lead, 1000km threshold

ECMWEF Subseasonal to Seasonal (S2S)
hindcasts include twice-per-week, 11
member ensembles, from 1996-2013.

Courtesy WCRP/WWRP
S2S Project

DeFlorio, Waliser, Guan, Lavers, Ralph, Vitart (2018)
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NPac/Western U.S.
— NDJFM

= 1000km
= =+ 500km

Decision Support
Tradeoffs

Lead time at which AR hit % =50 AR hit % at 7-day lead

— NDJFM —— NDJFM
—a— NPac/Western US —a— NPac/Western US

—*— Refclim

750 500
Distance threshold (km)

Distance threshold (km)

DeFlorio, Waliser, Guan, Lavers, Ralph, Vitart (2018)
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Previous Studies

Geographic AR Freq @ U.S. Global Change
Region (* %) Research Program

CLIMATE SCIENCE

Pierce et al. (2013) 1985 - 1994 2060s CA Coast +25-100 = S P E c I A L R E P o R T
¢ r SRRCAREATE TN B »

Publication

Warner et al. (2015) 1970 -1999 2070 - 2099 +230 - 290

1975 - 2004 2070 - 2099
1920 - 2005 2006 - 2099

1960 - 2005

Gao et al. (2016) 1975 - 2004 2070 - 2099 'W. Europe

Ramos et al. (2016) 1980 - 2005 2074 - 2099 Europe

Shields et al. (2016) 1960 - 2005 2055 -2100 North Atlantic

Espinoza et al.
'W. Europe Fourth National Climate Assessment | Volume |

* No Global Studies
 No way to compare UK & US, different models, methods and algorithms
* What about outside UK & US?

Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions)
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AR Frequency, Size & Transport: 21 CMIP5 Models

Historical (1979-2002)
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Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions)



Calforna nttute of Techlogy Climate Change & ARs
AR Frequency, Size & Transport: 21 CMIP5 Models

ERA-Interim (1979-2002)

Historical (1979-2002)
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Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions)
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AR Frequency, Size & Transport: 21 CMIP5 Models

Composite AR IVT Histogram

AR conditions vs AR Events

Composite AR Width Histogram
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Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions)
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Changes in ARs

About 25% longer
About 25% wider

About 10% fewer

AR Conditions = Number ARs * Length * Width
About 40% Increase in AR Conditions

Occurrence of extreme IVT values within ARs ~double.

Espinoza, Waliser, Guan, Lavers, Ralph (2018, submitted w/ revisions)
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0-14 Days

e.g. Atmospheric Rivers
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Forecast Skill Increasing Forecast Errors Diminishing

NHC Official Track Error Trend
Atlantic Basin

NCEP Operational Forecast Skill

36 and 72 Houi MB over North America
"

More/Better Observations
Improved Models
More Computing Power

e ad
o

0 L . L L . L
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

General Weather Patterns Hurricanes

.. cold spells, hurricanes, heat waves, thunderstorms/tornados, nor’easters, santa ana winds, etc
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Forecast Lead Times

 Weather 0-14 Days Subseasonal
. Sub I 5.1 Week to Seasonal
ubseasona - eeks (525)
e Seasonal 3-12 Months 2 weeks -12
months
* Interannual 1 year - Decade
e Climate Decades - Centuries

e AW

e 0016
. % ,‘mr.'.;":":' NAS
NEXT GENERATION EARTH Re p O rt

SYSTEM PREDICTION
0

p.s. "subseasonal” aka “intraseasonal”
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LifeCycle “Months

Q NWS /NCEP/CPC

Neutral  El Nino

La MNina

Ocean
Surface
Temperature

CA Division 6 October-March Precipitation
(versus Southern Oscillation Index for prior June-November)

e o | Years 1933/1934-
| 2013/2014
| rr=0.22
| Correlation =-0.47
| Mean =19.89 in

—

~LMeanall=15.30in
| Mean=11.27 in

’,‘\:

y Aé??j&:irr:c Extra-tropical Impacts — Difficult/Still Learning
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LifeCycle ~Weeks

MJO Forecast Skill vs Year
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Nypical Wintertime Weather Anx

Heavy West Coast Preci

Tropical MJO — Skill out to 3-4 Weeks
Extra-tropical Impacts — Difficult/Still Learning

More/Better Observations

Extra-tropical Improved Models
Atmospheric

Circulation More Computing Power
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Experimental Atmospheric River Forecast*
Issued on Monday, March 12, 2018

Contents:

Slides 1 and 2: “Weather” - Typical presentation of US west coast weather/precipitation forecast over
lead times of 1 to 14 days considering only the likelihood of an atmospheric river (AR) occurring on a
given forecast day. Novelly — a weather forecast presented only in terms of AR likelihood.

Slides 3 and 4: “Subseasonal” - US west coast weather/precipitation forecast for week 3 considering
the likelihood of an atmospheric river occurring in the given forecast week.

Neovelty — as above, but also specifically for week 3, an extended/fong-range or “subseasonal” prediction

POC: Michael J. DeFlorio (michael.deflorio @jpl.nasa.gov)

" Jet Propulsion Laboratory c
@ California schnology 4 @ 'I




**EXPERIMENTAL AR FORECAST***

March 12, 2018 forecast: probability of AR occurrence during week-1
N Mar 13,2018 1-day lead 60 Mar 17,2018 5-day lead

=
50N 50N 80% We e k 1
A0N 40N
SN § E 20N : 0% (1-day to 7-day lead)
20N 140W 120w 20N 140W 120W
60N Mar 14, 2018 2-day lead SON Mar 18, 2018 6-day lead 60%
=,
50N 50N
40N i% 40N 50% Experimental AR forecast issued on Monday, March
30N . 30N 41 12, 2018 by M. DeFlorio, A. Goodman, D. Waliser,
20N o0 20N —— o 0w 40% B. Guan, A. Subramanian, and M. Ralph using 51-
Mar 15,2018  3-day lead Mar 19,2018  7-day lead member real-time ECMWF data for an o

ooN ‘ oON 2« Experimental AR Forecasting Research Activity
50N 50N 4 30% sponsored by California DWR
A0N 40N
30N ' 30N 20%

5 0
20N 140W 120w 20N 140W 120W

Mar 16,2018 4-day lead Jet Propulsion Laboratory Center for Western Weather

60N u 10% California Institute of Technology @ and Water Extremes
50N =
40N . 0% -
30N ~ Contact: M. DeFlorio
20N - (michael.deflorio@jpl.nasa.gov)

140W 120w



**EXPERIMENTAL AR FORECAST***

March 12, 2018 forecast: probability of AR occurrence during week-2

Mar 20, 2018 8-day lead 60N Mar 24, 2018 12-day lead
= = 80%
Week-2
40N 40N
son son . 0% (8-day to 14-day lead)
20N 140W 120W 20N 140W 120W
60N Mar 21, 2018 9-day lead 60N Mar 25, 2018 13-day lead 60%
50N = 50N =
40N 40N 50% Experimental AR forecast issued on Monday, March
30N 30N . 12, 2018 by M. DeFlorio, A. Goodman, D. Waliser,
20N 20N B. Guan, A. Subramanian, and M. Ralph using 51-
140w 120W 140W 120W 400/
oy Mar 22,2018 10-cay lad Mar 26,2018 14—day lead 0 member real-time ECMWF data for an
e GON Experimental AR Forecasting ResearchActivity
50N 50N 5 H 30% sponsored by California DWR
40N 40N
30N 30N ‘ i | 20%
20N 140W 120W 20N 120W 120W
Mar 23’ 2018 11_day lead Jet Propulsion Laboratory Center for Western Weather
60N s — 10% California Institute of Technology @ and Water Extremes
50N
40N U 0% -
30N - Contact: M. DeFlorio
20N (michael.deflorio@jpl.nasa.gov)
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***EXPERIMENTAL AR FORECAST***

March 12, 2018 forecast: probability of AR occurrence during week-3

(chance of an AR occurring at any time during week-3)

Mar 27 to Apr 2, Climatology

15-day to 21-day lead

140W
Mar 27 2018 to Apr 2 2018, Forecast

120W
15-day to 21-day lead

80%

70%

60%

50%

40%

30%

20%

10%

0%

Week-3
(Combined 15-day to 21-day lead)

Top row: hindcast climatology (ECMWF 1996-2015 data)
Bottom row: real-time forecast (ECMWF 51-member ensemble)

Experimental AR forecast issued on Monday, March
12, 2018 by M. DeFlorio, A. Goodman, D. Waliser,
B. Guan, A. Subramanian, and M. Ralph using 51-
member real-time ECMWF data for an
Experimental AR Forecasting Research Activity
sponsored by California DWR

R\ Jet Propulsion Laboratory eA’ o iy Loster Weather
[ California Institute of Technology V

Contact: M. DeFlorio
(michael.deflorio@jpl.nasa.gov)



***EXPERIMENTAL AR FORECAST***

March 12, 2018 forecast: probability of AR occurrence during week-3
(chance of an AR occurring at any time during week-3)

Mar 27 to Apr 2, Climatology 15-day to 21-day lead jz:: W e e k_ 3
60% (Combined 15-day to 21-day lead)

50% Top row: hindcast climatology (ECMWF 1996-2015 data)
Bottom row: real-time forecast minus climatology (ECMWF 51-
member ensemble)

40%

30%

20% Experimental AR forecast issued on Monday, March
10% 12, 2018 by M. DeFlorio, A. Goodman, D. Waliser,
B. Guan, A. Subramanian, and M. Ralph using 51-

20N : -
140W 120W 0% .
Var 27. 2016 1o Aor 2. 2018, F i5day to 21day lead ’ member real-time ECMWF data for an
, % s 5 t to 21— . . ..
60N == — ! ———1 = 50% Experimental AR Forecasting Research Activity
40% _ sponsored by California DWR
3006 Higher than
50N °* | average AR
20% activity
10%
i ) N
Jet Propulsion Laboratory e) Center for Western Weather
-10% California Institute of Technology V
30N o
71 Lower than
h_ -30% | average AR
20N 140W 120W -40% activity Contact: M. DeFlorio

-50% W (michael.deflorio@jpl.nasa.gov)
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Summary

e Atmospheric Rivers are a global phenomena that shape the Earth’s
climate, water and energy cycles, as well as account for regional
weather and water extremes.

* We've developed a detection algorithm that can be consistently used on
global “observations” (i.e. re-analyses), climate simulations and forecast
models.

» Using this detection algorithm, we are developing model diagnostics and
performance metrics, in conjunction with other observations (e.g. in-situ
CalWater, satellite), to:

©)
©)

Identify and characterize hydrometeorological impacts from ARs
Evaluate model performance and identify weaknesses to guide
model improvement.

Quantify forecast skill in a suite of operational S2S/weather
prediction models.

Characterize projected 21°" century changes in Atmospheric Rivers.
Develop experimental week-3 AR activity forecast products.
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o catemaisueotreetlesy Alggrithm Validation Support from CalWater
Guan, Waliser and Ralph (2018)
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Calforniz nstiute of Technology - AR Hjstory: Poleward Moisture Transports
Influencing global Climate & Water Extremes
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Over 90% of poleward moisture transport at midlatitudes is by ARs that
take up only ~10% of the zonal circumference; Zhu and Newell (1998)

odel / Polar Front Theory
For discussion on connections 2

between ARs, Tropical
Moisture Exports (TMEs) and
Warm Conveyor Belts (WCBs),
see Cordeira (2015).

Figure courtesy J. Cordeira, Plymouth University



